ARTICLE IN PRESS Ceramics International xxx (xxxx) xxx-xxx FISFVIER Contents lists available at ScienceDirect #### Ceramics International journal homepage: www.elsevier.com/locate/ceramint ## Temperature stability and high-Qf of low temperature firing Mg₂SiO₄–Li₂TiO₃ microwave dielectric ceramics Yuanming Lai, Caiyun Hong, Lichuan Jin, Xiaoli Tang, Huaiwu Zhang, Xin Huang, Jie Li, Hua Su* State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China #### ARTICLE INFO # Keywords: Microwave dielectric ceramic Temperature stability High-Qf value Low temperature firing #### ABSTRACT In this work, a series of low-temperature-firing $(1-x) \text{Mg}_2 \text{SiO}_4 - x \text{Li}_2 \text{TiO}_3 - 8$ wt% LiF (x=35-85 wt%) microwave dielectric ceramics was prepared through conventional solid state reaction. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses showed that the Li₂TiO₃ phase was transformed into cubic phase LiTiO₂ phase and secondary phase Li₂TiSiO₅. Partial substitution of Mg^{2+} ions for Ti^{3+} ions or Li⁺Ti³⁺ ions increased the cell volume of the LiTiO₂ phase. The dense microstructures were obtained in low Li₂TiO₃ content $(x \le 65 \text{ wt}\%)$ samples sintered at 900 °C, whereas the small quantity of pores presented in high Li₂TiO₃ content $(x \ge 75 \text{ wt}\%)$ samples sintered at 900 °C and low Li₂TiO₃ content $(x \ge 75 \text{ wt}\%)$ sintered at 850 and 950 °C. Samples at $(x \ge 45 \text{ wt}\%)$ under sintering at 900 °C for 4 h showed excellent microwave dielectric properties of $(x \ge 75 \text{ wt}\%)$ microwave dielectric properties of $(x \ge 75 \text{ wt}\%)$ microwave dielectric properties of $(x \ge 75 \text{ wt}\%)$ microwave dielectric properties of $(x \ge 75 \text{ wt}\%)$ microwave dielectric properties of $(x \ge 75 \text{ wt}\%)$ microwave dielectric properties of $(x \ge 75 \text{ wt}\%)$ microwave dielectric properties of $(x \ge 75 \text{ wt}\%)$ microwave dielectric properties of $(x \ge 75 \text{ wt}\%)$ microwave dielectric properties of $(x \ge 75 \text{ wt}\%)$ microwave dielectric properties of $(x \ge 75 \text{ wt}\%)$ microwave dielectric properties of $(x \ge 75 \text{ wt}\%)$ microwave dielectric properties of $(x \ge 75 \text{ wt}\%)$ microwave dielectric properties of $(x \ge 75 \text{ wt}\%)$ microwave dielectric properties of $(x \ge 75 \text{ wt}\%)$ microwave dielectric properties of $(x \ge 75 \text{ wt}\%)$ microwave dielectric properties of $(x \ge 75 \text{ wt}\%)$ microwave dielectric properties of $(x \ge 75 \text{ wt}\%)$ microwave dielectric properties of $(x \ge 75 \text{ wt}\%)$ microwave dielectric properties of $(x \ge 75 \text{ wt}\%)$ microwave dielectric properties of $(x \ge 75 \text{ wt}\%)$ microwave dielectric properties of #### 1. Introduction LTCC technology plays an important role in microelectronic applications. This technology requires materials with moderate dielectric constant (ϵ_r), high Q \times f values, near-zero temperature coefficients of resonant frequency ($\tau_f \leq \, \pm \, 10$ ppm/°C) and low firing temperature (\sim 961 °C to co-fire with Ag) for practical application [1-5]. Forsterite (Mg₂SiO₄) is an important candidate for microwave applications because of its high Q \times f value (Q \times f = 240,000 GHz) [6–9]. However, Mg₂SiO₄ ceramics require high sintering temperatures (1350–1450 °C) and negative temperature coefficients of resonance frequency ($\tau_f = -$ 67 ppm/°C) to satisfy LTCC application requirements [10-12]. Several glass types, such as lithium borosilicate glass, calcium borosilicate and lithium magnesium zinc borosilicate glasses, are used to reduce the sintering temperature of Mg₂SiO₄ ceramics [13-15]. However, these glass additives exhibit the following two disadvantages: (i) deterioration of microwave dielectric properties [13], and (ii) high sintering temperature requirement (1325 °C for 4 h) [14]. LiF is widely used as sintering aid for microwave ceramics because of its low melting point (~ 848 °C) and retention of remarkable microwave properties [16-20]. According to dielectric complex rules, CaTiO3 and TiO2 are widely utilized to adjust the τ_f value to zero because of their large positive τ_f of approximately + 800 and + 430 ppm/°C, respectively. But additives of CaTiO₃ and TiO₂ can deteriorate dielectric properties [16,21]. The rock salt-type Li₂TiO₃ has attracted considerable attention in microwave dielectric ceramics because of its positive τ_f value, relatively high Q×f value and low sintering temperature [22,23]. However, pure Li₂TiO₃ ceramics with high densification is very difficult to obtain by conventional solid-state method because of porous microstructures and microcracks formed through lithium evaporation and order–disorder phase transition at high temperatures [23–26]. Several approaches have been employed to improve the densification of Li₂TiO₃ ceramics; such approaches include the use of nanosized particles and sintering aids [23,27,28]. Nevertheless, adjustment of the negative τ_f of microwave dielectric ceramics by using Li₂TiO₃ has been rarely reported. In this work, Mg_2SiO_4 and Li_2TiO_3 composite was obtained by solid phase reaction. The Mg_2SiO_4 and Li_2TiO_3 composites were added with LiF to decrease the sintering temperature. The temperature stability, high-Qf and low-temperature firing of Mg_2SiO_4 – Li_2TiO_3 microwave dielectric ceramics were assessed. XRD patterns, XPS spectra, SEM images and Vector Network Analyzer were used to analyze phase composition, microstructure, microwave dielectric properties and chemically compatible with Ag electrode material. #### 2. Experimental procedure Mg₂SiO₄ and Li₂TiO₃ ceramics were prepared through solid-state ceramic route. Analytically pure MgO, TiO₂, Li₂CO₃(Shanghai Aladdin * Corresponding author. E-mail address: uestcsh77@163.com (H. Su). http://dx.doi.org/10.1016/j.ceramint.2017.08.192 Received 6 August 2017; Received in revised form 14 August 2017; Accepted 29 August 2017 0272-8842/ © 2017 Published by Elsevier Ltd. Y. Lai et al. Ceramics International xxxx (xxxxx) xxxx—xxx Biological Technology Co., LTD) and SiO2 (Sinopharm Chemical Reagent Co., Ltd) were used as starting materials, weighed and wet mixed in distilled water by using zirconia balls in a plastic container for 4 h. The slurry of Mg₂SiO₄ and Li₂TiO₃ was dried and calcined in alumina crucibles at 1350 $^{\circ}\text{C}$ and 850 $^{\circ}\text{C}$, respectively, for 4 h. The calcined accordance powders were mixed in with the $Mg_2SiO_4-xLi_2TiO_3-8$ wt% LiF (x = 35, 45, 55, 65, 75 and 85 wt%) and ground into fine particles. The samples were then pressed under a uniaxial pressure of 10 MPa into cylindrical disks with 12 mm diameter and 4-5 mm height. Sintering was carried out at temperatures between 850 and 950 °C for 4 h. The crystalline phase of the ceramics was confirmed using PANalytical X'Pert PRO with Cu K_{\alpha} radiation ($\lambda = 1.54 \,\text{Å}$) at room temperature. The XRD patterns were measured in the 2θ angle range between 10° and 120° with a step of 0.02° and a time per step of 1.0 s. Structural refinements were conducted through Rietveld method using FullProf software. The titanium XPS spectra of x = 45 wt% sintered at 900 °C were recorded with a Kratos XSAM800 spectrometer with monochromatic Al Kα radiation. The microstructures and morphology of the sintered samples were analysed by a scanning electron microscope (SEM) (JSM-7001F; JEOL, Japan) at an accelerating voltage of 20 kV. In order to analyze distribution of element, EDS mapping of x =45 wt% sintered at 900 °C were also recorded. The density of each sample was measured at room temperature by the Archimedes method using distilled water as the buoyancy liquid. Microwave dielectric properties were assessed by a Vector Network Analyzer (N5230, Agilent Technologies, USA). The relative dielectric constants (ε_r), quality factor $(Q \times f)$ and temperature coefficient of resonance frequency (τ_f) of the samples were determined through Hakki-Coleman dielectric resonator method. #### 3. Results and discussion The XRD patterns of the $(1-x)Mg_2SiO_4$ – xLi_2TiO_3 –8 wt% LiF (x=35, 45, 55, 65, 75 and 85 wt%) ceramics are shown in Fig. 1. Notably, the main phases include Mg_2SiO_4 (ICDD no. #04–0768), LiTiO₂ (ICDD no. #16-0223) and Li₂TiSiO₅ (ICDD no. #82-1955) with increasing x. It is well known that Li₂TiO₃ phase in three modifications: the metastable cubic α -Li₂TiO₃, ordered monoclinic β -Li₂TiO₃ and disordered cubic γ -Li₂TiO₃, α -Li₂TiO₃ phase transforms to the monoclinic β -Li₂TiO₃ at 300 °C and, after which the reversible transition of the β -Li₂TiO₃ to γ -Li₂TiO₃ occurs at 1150–1215 °C. As low Li₂TiO₃ content, the Mg_2SiO_4 additive lead to transformation of Li₂TiO₃ phase into a cubic LiTiO₂ phase. Similar changes were obtained for the Li₂TiO₃ ceramics, along with the excess MgO, ZnO and NiO (>30 wt%) [24–26]. Moreover, since the LiF has a face centered cubic rock salt structure which is Fig. 1. The XRD patterns of the (1-x)Mg₂SiO₄–xLi₂TiO₃–8 wt% LiF ceramic sintered at 900 °C for 4 h. Fig. 2. The XRD patterns of Mg_2SiO_4 (a) and Li_2TiO_3 (b) calcined at 1350 °C and 850 °C, respectively. similar with that of Li₂TiO₃ (superstructure with edge-sharing cation oxygen octahedral), solid solutions between Li₂TiO₃ and part of LiF can be formed [29]. In the case of high LiF content (8 wt%), a slight amounts of excess Li⁺ ions and F⁻ ions were derived from LiF. These ions enter into Li₂TiO₃ lattice result in Li₂TiO₃ phase present disordered cubic structure (LiTiO₂). This can be a main reason the Li₂TiO₃ phase also transform into a cubic LiTiO2 phase with high Li2TiO3 content. Similar results were obtained for the (1-x)Li₂TiO₃-xLiF ceramics (when $0.15 \le x \le 0.4$) [30]. In addition, the diffraction peaks of LiTiO₂ at the lattice plane were inclined toward the lower diffraction angles. This pattern indicates that the unit cell volumes can increase with increasing x because of the substitution of a larger Mg^{2+} (R = 0.72 Å) for a smaller Ti^{3+} (R = 0.67 Å) or $Li^{+}Ti^{3+}$ ($R_{av} = 0.715 \text{ Å}$), and the replacement mechanism could be proposed as $2Ti^{3+} \leftarrow 3Mg^{2+}$ or Li⁺Ti³⁺←2Mg²⁺ [24]. Moreover, the MgSiO₃ phase was detected in calcined powder of Mg₂SiO₄ (Fig. 2(a)). But the MgSiO₃ phase unexpectedly disappeared when Mg2SiO4 calcined power was sintered with Li₂TiO₃ and LiF. Thus, it can be deduced that the Li₂TiSiO₅ phase may be produced as a result of chemical reaction between MgSiO3 and Li₂TiO₃ phases: $$\text{Li}_2\text{TiO}_3 + 2\text{MgSiO}_3 \rightarrow \text{Li}_2\text{TiSiO}_5 + \text{Mg}_2\text{SiO}_4$$ The Li₂TiSiO₅ phase were also found between Mg₂SiO₄ and TiO₂ phases with LiF in the previous report [16]. The impure phase may deteriorate the dielectric properties. Furthermore, the phase-containing F ions were not detected by XRD when 8 wt% LiF was added. This result may be due to two main reasons. First, partial substitution of O2- ions by F ions may have occurred. Second, the LiF may have formed an amorphous phase because the sintering temperature exceeded the compound's melting point (848 °C). Previous research has indicated that the solid solubility limit of F in Li₂TiO₃ is about 4 wt%, and when LiF > 6 wt%, a large extent of liquid phase during sintering process inhibit the entrance or occupation of Li⁺ and F⁻ in the Li₂TiO₃ lattice [23,30]. In this work, both of these are likely to really happen because of the LiF content up to 8 wt%. In addition, the EDS elemental mapping analysis of x = 45 wt% ceramic sintered at 900 °C for 4 h are plotted in Fig. 3. It is obvious that F element is uneven distributions in the samples, and partial segregations in some specific regions can be observed. To obtain the structure, lattice parameter and unit cell volume, the whole XRD pattern was refined using the Fullprof program [31]. Such refinement involved constraining within the orthorhombic, cubic and tetragonal structural models of ${\rm Mg_2SiO_4}$ (a=4.7600 Å, b=10.2000 Å and c=5.9900 Å), LiTiO₂ (a=b=c=4.1400 Å) and Li₂TiSiO₅ (a=b=6.4379 Å, c=4.4003 Å) with the space groups *Pbnm*, *Fm-3m* and *P4/nmm*, respectively. As representative data, the refined XRD patterns of the x=45 wt% ceramics are shown in Fig. 4. All the fitted curves Y. Lai et al. Ceramics International xxxx (xxxxx) xxxx-xxxx Fig. 3. Elemental mapping of the x = 45 wt% samples sintered at 900 °C for 4 h. Fig. 4. Rietveld refinements of XRD pattern for x = 45 wt% sintered at 900 °C for 4 h. match well with the experimental data, and the positions of the Bragg reflections are consistent with the indexed peaks. The refined XRD parameters, lattice constants, R factors and the percentages of the phases are listed in Table 1. The unit cell volumes of $LiTiO_2$ increased with Li_2TiO_3 content addition, consistent with the shift in the diffraction peaks of (220) to lower diffraction angles (Fig. 1). The x=45 wt% ceramics sintered at 900 °C were analysed by XPS to investigate the possibility of the valence state of Ti ions. The Ti³⁺ ions in the 457.8 and 463.5 eV energy regions were detected in the x=45 wt% ceramics (Fig. 5). The ratio of Ti³⁺ to Ti⁴⁺ was close to 1.5:1 (60.97%: 39.03%), as calculated from the ratio of the peak areas. The results suggest that the Ti⁴⁺ ions were partially converted into Ti³⁺ ions during the sintering process with Mg₂SiO₄ addition. The Ti³⁺ and Ti⁴⁺ ions may derive from the LiTiO₂ and Li₂TiSiO₅ phases, respectively. According to the refinement results, the ratio of the LiTiO₂ phase to the Li₂TiSiO₅ phase was close to 1.1:1 (51.68 mol%:48.32 mol%), which is nearly consistent with the XPS result. The microstructure of the $(1-x)Mg_2SiO_4$ - xLi_2TiO_3 -8 wt% LiF ceramics was investigated by SEM (Fig. 6(a)-(g)). In the Fig. 6(a)-(d), Y. Lai et al. Ceramics International xxxx (xxxxx) xxxx—xxx Table 1 Lattice parameters, R factor and the percentages of phases from Rietveld refinement for $(1-x)Mg_2SiO_4-xLi_2TiO_3-8$ wt% LiF (x=35,45,55,65,75) and 85 wt%) ceramics. | | | 35 | 45 | 55 | 65 | 75 | 85 | |----------------------------------|----------------------|---------|---------|---------|---------|---------|---------| | Mg ₂ SiO ₄ | a(Å) | 4.7558 | 4.7556 | 4.7559 | 4.7554 | 4.7559 | 4.6723 | | | b(Å) | 10.1998 | 10.2001 | 10.2009 | 10.2016 | 10.2085 | 10.0296 | | | c(Å) | 5.9806 | 5.9809 | 5.9811 | 5.9809 | 5.9736 | 6.1924 | | | V(ų) | 290.105 | 290.123 | 290.169 | 290.146 | 290.019 | 290.182 | | | wt% | 60.96 | 48.06 | 32.29 | 21.18 | 8.19 | 0.50 | | ${\rm LiTiO_2}$ | a(Å) | 4.1347 | 4.1350 | 4.1362 | 4.1366 | 4.1379 | 4.1380 | | | $V(\mathring{A}^3)$ | 70.688 | 70.700 | 70.762 | 70.783 | 70.849 | 70.855 | | | wt% | 15.03 | 24.21 | 39.30 | 49.24 | 65.07 | 82.32 | | ${ m Li}_2{ m TiSiO}_5$ | a(Å) | 6.4595 | 6.4591 | 6.4595 | 6.4580 | 6.4566 | 6.4546 | | | c(Å) | 4.4268 | 4.4252 | 4.4245 | 4.4251 | 4.4258 | 4.4204 | | | $V(\mathring{A}^3)$ | 184.707 | 184.617 | 184.614 | 184.554 | 184.501 | 184.158 | | | wt% | 24.02 | 27.73 | 28.41 | 29.58 | 26.74 | 17.18 | | | R _p (%) | 9.41 | 8.87 | 8.49 | 8.93 | 8.75 | 8.81 | | | R _{wp} (%) | 12.6 | 11.8 | 11.3 | 12.0 | 11.9 | 12.1 | | | R _{exp} (%) | 11.44 | 11.87 | 12.12 | 12.36 | 12.58 | 12.69 | | | χ^2 | 1.41 | 1.16 | 0.999 | 1.11 | 1.03 | 1.02 | **Fig. 5.** XPS spectra of Ti 2p for the x = x = 45 wt% samples sintered at 900 °C for 4 h. the microstructures are dense with no visible porous structure and microcrack. Previous studies indicated the great difficulty in obtaining pure Li₂TiO₃ ceramics with high densification through the conventional solid-state method. And the porous microstructures were also observed in the Li₂TiO₃ ceramics with MgO, ZnO and NiO in the previous work [24-26]. The liquid phase of LiF, which has formed with the high temperature, can promote the densification of the ceramics. Moreover, volatilization of the Li⁺ ions in Li₂TiO₃ can result in pores at high temperature. But a moderate amount of excess Li⁺ ions, which were derived from LiF, compensate for the escape of Li+ ions during sintering. Thus, the moderate excess Li+ ions can be deduced as the one of the reasons underlying the high densification in this work. Similar results were obtained in the nonstoichiometric Li_{2+x}TiO₃ ceramics [27]. A small number of pores (enclosed by the dotted line) were observed at $x \ge 75$ wt% sintered at 900 °C, as well as the grain boundaries are not well revealed (Fig. 6(e) and (f)). On the one hand, the volatilization of large amount of Li+ ions can lead to appear pores. On the other hand, the very rapid mergence of small subgrains leads to the pore isolation in the large grains because of boundary breakaway. Notably, the grain size enlarged with increasing Li₂TiO₃ content because Li₂TiO₃ ceramics involve a lower sintering temperature than that of Mg₂SiO₄ ceramics sintered at 900 °C. The grain size of the ceramics increased from 1 µm to 5 μm for the $x \le 55$ wt% samples to about 5–20 μm for the $x \le 55$ 85 wt% samples. Compared with microstructure of x = 45 wt% sintered at different temperatures (Fig. 6(b), (g) and (h)), the average grain size of the samples tended to increase with the increase of sintering temperature. Incomplete sintering can caused the small grain size $(<1~\mu m),$ which can be observed in Fig. 6(g). In addition, the pores were observed as sintered at 850 and 950 °C whereas the dense microstructure was obtained as sintered at 900 °C. Compared with the sintering at 900 °C, higher sintering temperature (950 °C) might lead to volatilization of Li $^+$ ions and the lower sintering temperature (850 °C) might give rise to incomplete sintering, which is responsible for the pores. Fig. 7 presents the bulk density as a function of $\rm Li_2TiO_3$ content for the samples sintered at different temperatures. The bulk densities increased with increasing $\rm Li_2TiO_3$ content due to comparative higher of theoretical density of $\rm Li_2TiO_3$ (3.42 g/cm³) than that of Mg₂SiO₄ (3.21 g/cm³). Samples sintered at 900 °C exhibited the highest bulk density because the pores present sintered at 850 and 950 °C (Fig. 6(b), (g) and (h)). Fig. 8 displays the ϵ_r values of $(1-x)Mg_2SiO_4–xLi_2TiO_3–8 wt%LiF ceramics as a function of <math display="inline">Li_2TiO_3$ content. The ϵ_r show virtually the same values and indicate that the ceramics possess the same phase composition and similar densification at different sintering temperature. In addition, the ϵ_r linearly increased from 9.5 for x=35 wt% to a maximum of about 16.5 at x=85 wt% because of the ϵ_r values of 6.8 and 22 for Mg_2SiO_4 and Li_2TiO_3 , respectively, at microwave frequencies. The Q \times f values of the (1-x)Mg₂SiO₄-xLi₂TiO₃-8 wt% LiF ceramics as a function of Li₂TiO₃ content are presented in Fig. 9. The Q × f values of the $(1-x)Mg_2SiO_4-xLi_2TiO_3-8$ wt% LiF ceramics decreased with increasing Li_2TiO_3 content, except in x = 75 wt%. In general, the Q × f values depended on the lattice vibrational modes, lattice defect, ordering structure, secondary phases and inner stress. The optimum Q imes f values were also obtained during sintering at 900 $^{\circ}$ C with the same Li₂TiO₃ contents. This result was significantly associated with the trend in microstructure (excepting in x = 75 wt%) (Fig. 6). Moreover, except in x = 75 wt%, the decrease in Mg_2SiO_4 content may have led to the initial decrease in Q \times f values because of the larger Q \times f values of the Mg_2SiO_4 phase than that of the LiTiO₂ phase [12,24]. At x = 75 wt%, this observation shows the great improvement in $\mathbf{Q} \times \mathbf{f}$ value relative to that of the pure Li_2TiO_3 phase (Q \times f \sim 1,5525 GHz) [23,24,28]. Similar results were obtained in 20 mol% MgO and ZnO-doped Li_2TiO_3 ceramics [24,25]. The partial segregation of Mg²⁺ ions, which resulted in the stabilisation of the ordering-induced domain boundaries for the Li₂TiO₃ phase, were responsible for the great improvement in Q × f value [24]. Fig. 10 demonstrates the temperature coefficients of resonant frequency (τ_f) of $(1-x)Mg_2SiO_4$ – xLi_2TiO_3 –8 wt% LiF ceramics with different x values sintered at 850–950 °C for 4 h. The τ_f values exhibited nonlinear behaviour as a function of x values. However, such values demonstrated the same trends under sintering at different Fig. 6. SEM micrographs of the samples sintered at 900 °C for 4 h with (a) x = 35 wt%, (b) x = 45 wt%, (c) x = 55 wt%, (d) x = 65 wt%, (e) x = 75 wt% and (f) x = 85 wt% together with the SEM micrographs of the x = 45 wt% samples sintered at (h) 850 °C and (f) 950 °C for 4 h. Y. Lai et al. Ceramics International xxx (xxxxx) xxx-xxx Fig. 7. The bulk density as a function of ${\rm Li_2TiO_3}$ content for the samples sintered at different temperatures. Fig. 8. The dielectric constants of $(1-x)Mg_2SiO_4-xLi_2TiO_3-8$ wt% LiF ceramics sintered at different temperature. Fig. 9. The Q \times f of (1-x)Mg₂SiO₄–xLi₂TiO₃–8 wt% LiF ceramics sintered at different temperature. temperatures. In general, the theoretical τ_f values of the mixture are predicted by the semiempirical linear model based on nominal composition: $$\tau_f = V_1 \tau_{f1} + V_2 \tau_{f2}$$ where τ_{f1} and τ_{f2} are the τ_f values of Mg₂SiO₄ and Li₂TiO₃ phases, respectively. The τ_f values of the mixed model linearly increased with increasing x values. The difference between the measured and mixed τ_f Fig. 10. The τ_f of $(1-x)Mg_2SiO_4$ – xLi_2TiO_3 –8 wt% LiF ceramics sintered at different temperature. values can be attributed to the production of a secondary phase during the sintering process. Near-zero τ_f values ($-3.0~pmm/^{\circ}C)$ were obtained at x=45 wt% under sintering at 900 $^{\circ}C$, as well as excellent microwave dielectric properties of $\epsilon_r=10.7,$ and Q \times f = 237,400 GHz. In order to evaluate the chemical compatibility of the (1-x) Mg₂SiO₄–xLi₂TiO₃–8 wt% LiF ceramics with electrode materials, 20 wt % Ag was added to x=45 wt% ceramic. Fig. 11 present the XRD of x=45 wt% ceramics with 20 wt% Ag. As is seen in Fig. 11, compared with non-Ag ceramic, it can be observed there is no phase of silver compounds presented other than metallic silver (Ag, ICDD #87-0597) phases. It indicated that no reaction occurred between (1-x) Mg₂SiO₄–xLi₂TiO₃–8 wt% LiF ceramics and Ag electrodes. Therefore, the (1-x)Mg₂SiO₄–xLi₂TiO₃–8 wt% LiF ceramics that exhibited chemical compatibility with Ag could be promising materials for LTCC applications. #### 4. Conclusions In this study $(1-x) \rm Mg_2 SiO_4$ – $x \rm Li_2 TiO_3$ –LiF (x=35,45,55,65,75 and 85 wt%) microwave dielectric ceramics were prepared using the solid-state reaction method. The specimens could be sintered at 850–950 °C, which is below the melting point of Ag (\sim 961 °C). Excellent microwave dielectric properties of $\epsilon_{\rm r}=10.7$, high Q \times f = 237,400 GHz and near zero $\tau_{\rm f}=-3.0$ ppm/°C were achieved at x=45 wt% under sintering at 900 °C for 4 h. In addition, these ceramics also exhibited excellent chemical compatibility with Ag. Thus, the Fig. 11. XRD of x = 45 wt% ceramic with 20 wt% Ag. Y. Lai et al. Ceramics International xxxx (xxxxx) xxxx—xxx fabricated ceramics was considered as a possible candidate for LTCC applications. #### Acknowledgements This work was supported by National Natural Science Foundation of China under Grant nos. 51372031 and 61471096, Science and Technology Department of Sichuan Province 2016JQ0016 and 2016GZ0258, National High-tech R & D Program of China under Grant no. 2015AA034102, National Key Research and Development Plan No. 2016YFA0300801, Fundamental Research Funds for the Central Universities No. A03013023601059. #### References - [1] D. Zhou, D. Guo, W.-B. Li, L.-X. Pang, X. Yao, D.-W. Wang, et al., Novel temperature stable high-er microwave dielectrics in the Bi₂O₃-TiO₂-V₂O₅ system, J. Mater. Chem. C 4 (2016) 5357–5362, http://dx.doi.org/10.1039/C6TC01431C. - [2] D. Zhou, L.-X. Pang, Z.-M. Qi, B.-B. Jin, X. Yao, Novel ultra-low temperature co-fired microwave dielectric ceramic at 400 degrees and its chemical compatibility with base metal, Sci. Rep. 4 (2014) 5980, http://dx.doi.org/10.1038/srep05980. - [3] D. Zhou, C.A. Randall, L.X. Pang, H. Wang, J. Guo, G.Q. Zhang, et al., Microwave dielectric properties of Li₂WO₄ ceramic with ultra-low sintering temperature, J. Am. Ceram. Soc. 94 (2011) 348–350, http://dx.doi.org/10.1111/j.1551-2916. 2010.04312.x. - [4] H. Chen, H. Su, H. Zhang, T. Zhou, B. Zhang, J. Zhang, et al., Low-temperature sintering and microwave dielectric properties of (Zn_{1-x}Co_x)₂SiO₄ ceramics, Ceram. Int. 40 (2014) 14655–14659, http://dx.doi.org/10.1016/j.ceramint.2014.06.053. - [5] L.-X. Pang, D. Zhou, Z. Qi, W. Liu, Z.-X. Yue, I.M. Reaney, Structure-property relations of low sintering temperature scheelite-structured (1-x)BiVO₄-xLaNbO₄ microwave dielectric ceramics, J. Mater. Chem. C 5 (2017) 2695–2701, http://dx.doi.org/10.1039/C6TC05670A. - [6] T. Tsunooka, M. Androu, Y. Higashida, H. Sugiura, H. Ohsato, Effects of TiO₂ on sinterability and dielectric properties of high-Q forsterite ceramics, J. Eur. Ceram. Soc. 23 (2003) 2573–2578, http://dx.doi.org/10.1016/S0955-2219(03)00177-8. - [7] K.X. Song, X.M. Chen, X.C. Fan, Effects of Mg/Si ratio on microwave dielectric characteristics of forsterite ceramics, J. Am. Ceram. Soc. 90 (2007) 1808–1811, http://dx.doi.org/10.1111/j.1551-2916.2007.01656.x. - [8] K.X. Song, X.M. Chen, C.W. Zheng, Microwave dielectric characteristics of ceramics in Mg₂SiO₄-Zn₂SiO₄ system, Ceram. Int. 34 (2008) 917–920, http://dx.doi.org/10. 1016/j.ceramint.2007.09.057. - [9] Y. Chen, X. Dong, R. Liang, J. Li, Y. Wang, Dielectric properties of Ba_{0.6}Sr_{0.4}TiO₃-Mg₂SiO₄-MgO composite ceramics, J. Appl. Phys. 98 (2005) 64107, http://dx.doi.org/10.1063/1.2058194. - [10] K.X. Song, X.M. Chen, Phase evolution and microwave dielectric characteristics of Ti-substituted Mg₂SiO₄ forsterite ceramics, Mater. Lett. 62 (2008) 520–522, http:// dx.doi.org/10.1016/j.matlet.2007.05.078. - [11] I.-J. Shon, H.-S. Kang, J.-M. Doh, J.-K. Yoon, Rapid synthesis and consolidation of nanostructured Mg₂SiO₄-MgAl₂O₄ composites, Mater. Trans. 52 (2011) 2007–2010, http://dx.doi.org/10.2320/matertrans.M2011188. - [12] J. Sugihara, K. Kakimoto, I. Kagomiya, H. Ohsato, Microwave dielectric properties of porous Mg₂SiO₄ filling with TiO₂ prepared by a liquid phase deposition process, J. Eur. Ceram. Soc. 27 (2007) 3105–3108, http://dx.doi.org/10.1016/j. jeurceramsoc.2006.11.032. - [13] T.S. Sasikala, M.N. Suma, P. Mohanan, C. Pavithran, M.T. Sebastian, Forsterite- - based ceramic-glass composites for substrate applications in microwave and millimeter wave communications, J. Alloy. Compd. 461 (2008) 555–559, http://dx.doi.org/10.1016/j.jallcom.2007.07.084. - [14] H. Yang, E. Li, C. Sun, S. Duan, Y. Yuan, B.I.N. Tang, The influence of sintering temperature on the microwave dielectric properties of Mg₂SiO₄ ceramics with CaO-B₂O₃-SiO₂ addition, J. Electron. Mater. 46 (2017) 1048–1054, http://dx.doi.org/10.1007/s11664-016-5046-8. - [15] T.S. Sasikala, C. Pavithran, M.T. Sebastian, Effect of lithium magnesium zinc borosilicate glass addition on densification temperature and dielectric properties of Mg₂SiO₄ ceramics, J. Mater. Sci. Electron. 21 (2010) 141–144, http://dx.doi.org/10.1007/s10854-009-9882-7. - [16] J. Ma, T. Yang, Z. Fu, P. Liu, Q. Feng, L. Zhao, Low-fired Mg₂SiO₄-based dielectric ceramics with temperature stable for LTCC applications, J. Alloy. Compd. 695 (2016) 3198–3201, http://dx.doi.org/10.1016/j.jallcom.2016.11.310. - [17] J. Zhang, Z. Yue, Y. Luo, X. Zhang, L. Li, Novel low-firing forsterite-based microwave dielectric for LTCC applications, J. Am. Ceram. Soc. 1124 (2016) 1122–1124, http://dx.doi.org/10.1111/jace.14132. - [18] A. Yokoi, H. Ogawa, A. Kan, H. Ohsato, Y. Higashida, Microwave dielectric properties of Mg₄Nb₂O₉-3.0 wt% LiF ceramics prepared with CaTiO₃ additions, J. Eur. Ceram. Soc. 25 (2005) 2871–2875, http://dx.doi.org/10.1016/j.jeurceramsoc. 2005.03.157. - [19] J. Zhang, Y. Zhou, Z. Yue, Low-temperature sintering and microwave dielectric properties of LiF-doped CaMg_{1-x}Zn_xSi₂O₆ ceramics, Ceram. Int. 39 (2013) 2051–2058, http://dx.doi.org/10.1016/j.ceramint.2012.08.058. - [20] A. Yokoi, H. Ogawa, A. Kan, H. Ohsato, Y. Higashida, Use of LiF to achieve a lowtemperature cofired ceramics (LTCC) with low dielectric loss, J. Ceram. Soc. Jpn. 112 (1) (2004) S1633–S1636. - [21] G. Dou, D. Zhou, M. Guo, Low-temperature sintered Mg₂SiO₄–CaTiO₃ ceramics with near-zero temperature coefficient of resonant frequency, J. Mater. Sci. Mater. Electron. 24 (2013) 1431–1438, http://dx.doi.org/10.1007/s10854-012-0945-9. - [22] Q. Zeng, W. Li, J. Shi, J. Guo, M. Zuo, W. Wu, A new microwave dielectric ceramic for LTCC applications, J. Am. Ceram. Soc. 89 (2006) 1733–1735, http://dx.doi.org/ 10.1111/j.1551-2916.2006.00942.x. - [23] J.L. Ma, Z.F. Fu, P. Liu, B. Wang, Y. Li, Microwave dielectric properties of low-fired Li₂TiO₃-MgO ceramics for LTCC applications, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 204 (2016) 15–19. http://dx.doi.org/10.1016/j.mseb.2015.10.007. - [24] J.J. Bian, Y.F. Dong, New high Q microwave dielectric ceramics with rock salt structures: $(1-x)li_2TiO_3 + xMgO$ system $(0 \le x \le 0.5)$, J. Eur. Ceram. Soc. 30 (2010) 325–330, http://dx.doi.org/10.1016/j.jeurceramsoc.2009.04.030. - [25] C. Huang, Y. Tseng, J. Chen, High-Q dielectrics using ZnO-modified Li₂TiO₃ ceramics for microwave applications, J. Eur. Ceram. Soc. 32 (2012) 3287–3295. - [26] J. Zhang, R. Zuo, Low-temperature fired thermal-stable Li₂TiO₃-NiO microwave dielectric ceramics, J. Mater. Sci. Mater. Electron. 27 (2016) 7962–7968, http://dx. doi.org/10.1007/s10854-016-4789-6. - [27] Y. Hao, Q. Zhang, J. Zhang, C. Xin, H. Yang, Enhanced sintering characteristics and microwave dielectric properties of Li₂TiO₃ due to nano-size and nonstoichiometry effect, J. Mater. Chem. 22 (2012) 23885, http://dx.doi.org/10.1039/c2jm33788f. - [28] J. Liang, W.Z. Lu, J.M. Wu, J.G. Guan, Microwave dielectric properties of Li₂TiO₃ ceramics sintered at low temperatures, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 176 (2011) 99–102, http://dx.doi.org/10.1016/j.mseb.2010.09.009. - [29] Y. Hao, H. Yang, G. Chen, Q. Zhang, Microwave dielectric properties of Li₂TiO₃ ceramics doped with LiF for LTCC applications, J. Alloy. Compd. 552 (2013) 173–179, http://dx.doi.org/10.1016/j.jallcom.2012.10.110. - [30] Y. Ding, J. Bian, Structural evolution, sintering behavior and microwave dielectric properties of (1 – x)Li₂TiO₃ + xLiF ceramics, Mater. Res. Bull. 48 (2013) 2776–2781, http://dx.doi.org/10.1016/j.materresbull.2013.03.043. - [31] J. Rodríguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction, Phys. B Condens. Matter 192 (1993) 55–69, http://dx. doi.org/10.1016/0921-4526(93)90108-I.